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Abstract

Pest infestations remain problematic in greenhouse agriculture, lowering yields and increasing
costs. Manual pest monitoring is laborious, slow, and error-prone, resulting in delayed
interventions and excessive pesticide applications. The main objective of this research was to
develop an Al-driven hybrid deep learning model for automated pest detection and outbreak
prediction, integrating Convolutional Neural Networks (CNNs) for image-based classification and
Long Short-Term Memory (LSTM) networks for forecasting to improve response efficiency. This
study relied on secondary datasets, such as PlantVillage and IP02, owing to constraints in obtaining
primary datasets. These datasets provided pre-annotated pest images and historical climate trends,
guaranteeing model robustness. Although the model was trained using secondary data, the study
was contextualized by greenhouses in Limuru, Naivasha, and Thika; areas where pest control is
an ongoing challenge. To enhance the model's ability to generalize and perform well in an array
of agricultural environments, a stratified sampling method which considered farm size and
agroclimatic differences was used. Technigues such as image augmentation, noise reduction, and
normalization of features were utilized to further improve the quality of the data before the model
was trained. Model training and optimization were performed in a GPU-enabled Google Colab
environment, which supported batch processing, early stopping, and fine-tuning of
hyperparameters. The hybrid model achieved 94.7% accuracy, 93.6% precision, 92.8% recall, and
a93.2% F1-score. With a Mean Absolute Error (MAE) of 0.14 and an R? score of 0.89, the LSTM
forecasting module demonstrated its efficiency. This hybrid approach enables early pest
identification, preventative actions, and reduced pesticide use.
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1.0 Introduction

Pest infestations threaten global agriculture,
with pests contributing about 40% of the total
losses in value of crops each year (Kaushik et
al., 2023). Traditional pest control
techniques, such as physical inspections and
pesticides, regularly fail to catch pests in the
early stages, thereby overusing pesticides and
harming the environment (Chowdhury &
Anand, 2023).

Artificial intelligence and deep learning offer
promising alternatives for automated pest
detection and prediction, enabling timely
interventions and promoting sustainable
farming (Yi et al., 2024).

In Africa, pest problems continue to be
severe in greenhouse systems where
controlled environments accelerate pest
reproduction (Mafongoya et al., 2019). To
enhance precision agriculture, several
nations, including Kenya, Nigeria, and South
Africa, have started implementing Al-driven
solutions (Adewusi et al., 2024). Despite
advancements, most farmers still depend on
manual scouting, which often lacks accuracy
and efficiency. While studies exist to develop
deep learning models for pest detection, very
few have been put into practice (Chowdhury
& and, 2023).

In Kenya, the rise of greenhouse farming has
increased not only crops' productivity, but
also the risk of pest pandemics. Poor pest
control can lead to postharvest losses,
exceeding 70% (Mugao, 2023).

The lack of real-time pest monitoring in
regions like Limuru, Naivasha, and Thika
highlights the need for Al-empowered pest
detection and prediction, which is introduced
in this study as a hybrid deep learning model
meant to assist with sustainable pest
management in Kenyan greenhouses.
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Statement of the Problem

Pest infestations in greenhouse agriculture
cause substantial losses when infested plants
are not detected promptly. Current pest
detection  methods include  manual
inspections that are error-prone and are not
real time. This research examined the issue
by proposing the application of a deep
learning solution integrating Convolutional
Neural Network (CNN) features for
extraction of images and Long Short-Term
Memory (LSTM), to analyze the time series
data for the detection and prediction of pest
invasions.

Purpose of the Study

This study aimed to design, and evaluate a
hybrid deep learning model that integrates a
CNN for pest identification from images and
LSTM networks for time series of pest
outbreak prediction. The overall aim was to
enhance the precision, function and
timeliness of managing pests affecting
greenhouse plants.

Obijectives of the Study

i. To develop a CNN model to accurately
identify image-base pest infections on
greenhouse crops.

ii. To develop a LSTM model to predict
pest outbreaks based on temporal
patterns

iii. To integrate the CNN and LSTM
models into a hybrid deep learning.

iv.  To evaluate the hybrid model’s
performance using  standard
metrics.

Theoretical Framework

This research used Deep Learning Theory
and Technology Acceptance Model (TAM)
to establish a dual-framework that addresses
both technical innovation and user-centered
design in greenhouse pest management. Deep
Learning Theory, grounded in artificial
neural network (ANN) principles, guides the



development of a hybrid Convolutional
Neural Network (CNN) Long Short-Term
Memory (LSTM) architecture. The CNN
layer extracts spatial features from pest
images whereas the LSTM layer encodes
time-dependent  environmental  trends.
Together, they embody the theory’s
principles of feature abstraction and temporal
memory (Maraveas, 2023; Khan et al., 2020).

The design decisions such as dropout
regularization to minimize overfitting or
ReLU activation as a non-linear function are
directly influenced by theoretical imperatives
of generalization and optimization.

In this framework, Deep Learning Theory
supports the technical model development,
while TAM offers a framework for
evaluating usability, perceived benefit and
system trust through Perceived Usefulness
(PU) and Perceived Ease of Use (PEOU), to
be sure the model will not only be successful
but also likely to be adopted. Stakeholder
feedback will assess real-world applicability
(Mohr & Kihl, 2021; Okai et al., 2024).

Empirical evidence supports the use of CNN-
LSTM models for pest detection in Asian
greenhouses (Zhang et al., 2021); vyield
forecasting in Germany (Khan et al., 2020);
and plant disease monitoring in India
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(Sharma et al., 2022). These implementations
helped inform the current model by
highlighting practical constraints, such as
latency and interpretability that must be
addressed  for successful deployment,
especially in Sub-Saharan Africa where such
technologies are still underutilized.

“The study found
compelling evidence
that the fybrid model
effectively and

accurately automated
identification and

prediction of pest
outbreaks in

greenhouse farming”

In conclusion, the model provides a
combination of technological capabilities of
deep learning and the user-centered
perspective of the TAM framework. It opens
the door to scalable and widely-used Al-
based pest management systems.

Figure 1
Conceptual Framework
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Empirical Literature Review

Advancements in artificial intelligence and
deep learning have improved pest detection
and outbreak forecasting in agriculture.
Nonetheless, the practical implementation is
limited because of the technical and
operational constraints. Conventional
methods, such as manual scouting and
pesticide applications are inefficient, costly,
and can be damaging to ecosystems due to
development of  pesticide  resistance
(Chithambarathanu & Jeyakumar, 2023).
Basic image processing methods (e.g.,
thresholding and edge detection) facilitate
some level of automation, but they are highly
unreliable in agricultural environments
which are complex and unpredictable
(Chowdhury & Anand, 2023).

CNNs have enhanced pest identification by
extracting features from images of diseased
plants (Chowdhury & Anand, 2023). Still,
their use in greenhouse settings is limited due
to inconsistencies in lighting conditions and
crop species. Teixeira et al. (2023) examined
transfer learning as a potential solution, but
cautioned that issues like dataset bias and
model degradation may compromise
predictive reliability.

To improve real-time monitoring, loT-based
solutions have been proposed, incorporating
cameras and environmental sensors (Mittal,
2024). Nonetheless, sometimes, lacking
predictive capacity, systems often require
computational capabilities that are not
accessible  to  smallholder  farmers
(Chithambarathanu & Jeyakumar, 2023). As
a result, lightweight Al models (Gao et al.,
2020) and intuitive user interfaces (Bieniek et
al., 2024) are perceived as necessary in
verifying  resource  contexts.  Limited
numbers, local access, and skepticism remain
challenges in their uptake in Kenya
(Chowdhury & Anand, 2023).

This study fills a critical gap by developing
and evaluating a hybrid CNN-LSTM pest
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management model designed to
accommodate  smallholder  greenhouse
farmers in Kenya. By integrating image
recognition with temporal prediction, the
model provides early alerts and offers a
context-appropriate, accessible solution for
pest detection and outbreak forecasting.

2.0 Materials and Methods
Research Design

The research adopted a hybrid research
approach, consisting of experimental,
comparative, and descriptive approaches to
evaluate deep learning models for pest
identification, detection, and prediction of
outbreaks in  greenhouse  agriculture
(Tirkoglu & Hanbay, 2019; Selvaraj et al.,
2019). The study entailed in-depth evaluation
of the models and an emphasis on usability
and acceptance, to ensure methodological
rigor and applicability.

The experimental evaluation consisted of
training datasets in a structured manner,
testing each model, and iteratively
optimizing the models based on established
key performance indicators; RMSE,
accuracy, precision, and recall (Teixeira et
al., 2023). The comparative approach
appraised the CNN, LSTM, and hybrid CNN-
LSTM architectures based on performance;
thereby allowing for comparison of models
against the previous pest detection
procedures (Chowdhury & Anand, 2023).

The descriptive approach analyzed existing
literature, interviews, and surveys on
automation in agriculture, highlighting users'
openness to adoption. Combined with
experimental and comparative analyses, it
provided key insights into the role of Al in
precision agriculture and pest management.

Contextual Population and Stakeholders

The study’s context comprise greenhouse
farming practices in Limuru, Naivasha, and
Thika, which were selected for their high pest
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pressure, horticultural importance, as well as
indication of diverse agroclimatic conditions.
Important stakeholders, such as farmers,
agronomists, extension officers were enrolled
through previous studies and institutional
reports to contextualize pest management and
use of AL

Secondary Data and Sampling Framework

Model development and evaluation were
conducted exclusively using secondary data,
including pest images and time-series records
on environmental and pest variables. The
data were derived from agricultural databases
and greenhouse databases, selected for
quality, completeness and relevance to target
areas.

Stratification and representation

A proportionate stratification sampling
procedure was used on the secondary
datasets, based on greenhouse distribution
across Limuru, Naivasha, and Thika. Limuru
provided the greatest volume of data,
reflecting the density of greenhouses in that
locality. The sampling technique guaranteed
representation of the variability in climate,

operating scale, and crop type which
increased the external validity of the model
and potential for its generalization across
greenhouses’ different contexts.

Dataset(s) and Tools Used

This study employed two secondary datasets
to guarantee reliable pest detection and
outbreak prediction owing to the constraints
of resources in collecting comprehensive
primary data. The image classification
dataset, PlantVillage, included 9,243 labeled
RGB images of healthy and pest-infected
leaves (Hughes & Salathé, 2019). For time
series forecasting, 1P202 and a structured
dataset of 3,150 temporally indexed records
which included environmental parameters
and pest counts were used (Kapetas et al.,
2025). These datasets provided historical
climate trends and pre-annotated pest images,
which helped the model to be resilient despite
limited direct data collection.

Both datasets were split for systematic model
training to ensure a fair assessment and
prevent overfitting (Table 1).

Table 1
Dataset Split
Dataset Split % l?ataset Distribution
PlantVillage 1P02
Training 70 6, 740 2,205
Validation 15 1,386 472
Testing 15 1,387 473

The 1P202 dataset and the PlantVillage
dataset were both preprocessed to maximize
model value prior to training.

The images were modified to standardize the
input dimensions for the CNN using an
adjusted image size of 224x224 pixels
(Hughes & Salathé, 2019). Pixel values were
normalized to a range of 01, which enhanced
model convergence during training (Teixeira
et al., 2023). To improve generalization
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across various situations, data augmentation
methods, such as flipping, random rotation,
and contrast adjustments were employed
(Ngugi et al., 2021).

To ensure consistency among the LSTM
input representations, environmental
parameters such temperature, humidity, and
pest counts were scaled using MinMax
normalization (Kapetas et al., 2025). To
maintain the continuity of the timeseries,
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missing data were treated using linear
interpolation (Gao et al., 2020). Stratified
sampling, which equally represented all
training subgroups, reduced biases in the
frequency of pest outbreaks (Wang et al.,
2025).

Computational Tools Used

Model training and evaluation were
conducted on the Google Colab platform. It
was developed using TensorFlow, Keras, and
OpenCV, with visualizations generated
through standard libraries. Preprocessing and
evaluation were done using Scikit-learn. This
approach supported the development of a
scalable and practical solution for pest
detection and forecasting.

Model Architecture

The model architecture used for this research
contained two main components: CNN for
image-based pest detection, and LSTM for
time-series  outbreak  prediction. The
integration of CNN and LSTM architectures
allowed the model to benefit from CNN's
spatial feature extraction from images of
infected leaves, while using environmental
trends for predicting outbreaks, and
establishing a robust Al-driven pest
management system.

CNN Model

A CNN model was employed to automate
pest identification by extracting spatial
features from infected leaf images. The
architecture consisted  of  multiple
convolutional layers that learned patterns and
textures. Each convolutional layer was
followed by a ReLLU activation function for
intricate data correlations. Maxpooling layers
allowed for reduction of the feature map
dimensions while retaining salient visual
features. Convolutional layers gradually
extracted complete pest specific patterns.
Finally, fully connected layers translated
features presented into a classification
probability for specific pest categories. This
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order of operations permitted the CNN to
achieve high pest detection accuracy. Figure
2 shows the CNN Model architecture;

Figure 2
CNN Model Architecture
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The LSTM model utilizes environmental data
like temperature and humidity to forecast
pest outbreaks, employing gated memory
cells to retain critical information and reduce
erTors. Performance improvements,
including bidirectional and stacked layers,
feature engineering, and hyperparameter
tuning, strengthened its capacity to learn
temporal patterns. This facilitates accurate
detection of pest infestation trends and
enables proactive pest management. The
LSTM architecture is shown in Figure 3.

Figure 3
LSTM Model Architecture

Time-Series
Data

'

Input Layer
LSTM Layer
LSTM Block
LSTM Layer

)

Dense Layers

Dense + Dropout

v

Output Layer




International Journal of Professional Practice (I/PP) VWb. I3 lsue No. 42025

Hybrid CNN-LSTM Model

The CNN-LSTM model integrated image-
based classification and environmental
forecasting as an end-to-end model, while
allowing for an overarching
multidimensional analysis of pests. The CNN
was required to extract spatial features from
images of leaves, while coding the visible
symptoms of pests into numerical feature
vectors. The feature vectors were then
concatenated with environmental sequential
data as time-series data, through the LSTM.
By combining images and environmental
features, the model also developed more
informed predictions, while it also developed
improved detection rates, which is a key to
supporting farmers to identify pests, and at
the same time predict their outbreak, as part
of a decision-support system for greenhouse
agriculture.

Combining CNN visual processing with
LSTM temporal analysis (Figure 4) improved
pest detection and forecasting, enabling
scalable real-time support in greenhouse
agriculture.

Figure 4
Hybrid CNN-LSTM Model architecture
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Evaluation Framework

To assess the hybrid CNN-LSTM model's
performance, the classification metrics were
used. This two-pronged approach validated
not only the spatial model components, but

also the temporal model components
(Powers, 2020).
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Classification Metrics for Pest Detection

Accuracy, is the number of correctly
predicted instances (true positives and true
negatives) over the number of all instances.

TP+TN
TP+TN+FP+FN

(1)

Accuracy =

where:
TP = True Positives
TN = True Negatives
FP = False Positives
FN = False Negatives

Precision, quantifies how many of the
positively predicted cases were actually
correct
Precision =
TP
TP+FP

()
Recall, determines the proportion of actual
pest-infested plants that the model correctly
identifies
TP
TP+FN

Recall =
(3)

F1-score, balances precision and recall for a
more stable evaluation of model performance

Precision X Recall

F1 —Score =2X —
Precision+Recall
“4)

Regression  Metrics  for  Outbreak

Forecasting

Root Mean Squared Error (RMSE) penalizes
large errors more than smaller ones, giving a
strong

sense of average magnitude of error.

RMSE = \/iZ?zl(yi — 91)?
(5)
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Mean Absolute Error (MAE), measures the
average magnitude of prediction errors
(Turkoglu et al., 2019):

MAE =
~ 2P 1y = il
(6)
where y; represents actual values,

yirepresents predicted values, and n is total
number of observations.

R2 Score, indicates how well the LSTM
model explains variance in pest outbreak
trends. A higher R? value indicates stronger
predictive performance (Harthik et al., 2024):

Yi— 99

RZ — i i
(i ¥)?
(7)

3.0 Results and Discussion

The research assessed CNN, LSTM, and
hybrid CNN-LSTM models for pest detection
and the forecasting of pest outbreaks with
image-based detection and error/miss
measures. The results indicated high levels of
reliability and predictive accuracy. The
research was compared to historic
benchmarks to ensure coverage, reliability

Table 1

and accuracy (Wahyono et al., 2021; Too et
al., 2019).

CNN Model’s Performance

The CNN model's performance in detecting
and classifying pest-infested crops was
assessed with multilabel classification
metrics, including accuracy, precision, recall,
F1 score, RMSE, and AUC.

CNN Training and Validation

Training accuracy increased from 85.2% to
96.2%, and validation accuracy from 82.7%
to 94.5% over 50 epochs. Training loss
decreased from 0.45 to 0.06, and validation
loss from 0.53 to 0.15, demonstrating
effective learning with no evidence of
overfitting. These findings corroborate those
of Too et al. (2019) who found out that CNN
is effective for static image tasks. With pest
outbreaks carrying temporal characteristics,
CNN alone could not properly address the
issue, leading to the incorporation of LSTM.

To evaluate robustness, the training was done
a total of five times. Table 2 provides mean,
standard deviation (SD), and 95% confidence
interval (CI) for training/validation metrics,
supporting the consistency of the model.

Training and Validation Accuracy across Epochs

Epoch Training Accuracy  SD 95% CI Validation Accuracy SD  95% CI
(%) Mean (€3] (%) Mean (€3)
10 85.2 0.15 0.13 82.7 0.15 0.13
20 90.46 0.11 0.10 87.96 0.11 0.10
30 93.7 0.14 0.12 91.2 0.14 0.12
40 95.02 0.08 0.07 93.0 0.15 0.13
50 96.22 0.08 0.07 94.5 0.08 0.07

Note: Mean training and validation accuracy (%) across five runs, with SD and 95% CI (£1.96 x SD/V5).
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Table 3
Training and Validation Loss Across Epochs 5
Epoch  Training Loss SD 95% ClI Validation SD 95% ClI
Mean (%) Loss Mean (%)
10 0.452 0.0084 0.0073 0.528 0.0084 0.0073
20 0.310 0.0071 0.0062 0.350 0.0071 0.0062
30 0.180 0.0071 0.0062 0.270 0.0071 0.0062
40 0.100 0.0071 0.0062 0.190 0.0071 0.0062
50 0.060 0.0071 0.0062 0.150 0.0071 0.0062

Note: Mean training and validation loss (MSE) across five runs, with SD and 95% CI (£1.96 x SD/\/5).

Figure 5
Accuracy and Loss Curves for CNN Model

Training and Validation Accuracy and Loss Curves

98 06
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The model's performance metrics (Table 3) strong balance between precision and recall
shows high classification accuracy and a after training.
Table 3
CNN Model’s Performance
Metric Score
Accuracy 92.4%
Precision 91.8%
Recall 90.3%
F1-Score 91.0%
AUC (ROC) 0.957

Note. Performance aligns with findings adapted from Turkoglu et al. (2019) and Hughes &
Salathé (2019).
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LSTM Model’s Performance

The LSTM model was trained using weekly
time-series data that included environmental
variables and pest incidence, aiming to
forecast pest activity one week ahead.
Throughout training, the model steadily
improved, as shown by the decline in both
training and validation losses (Figure 6),
indicating that it learned temporal patterns
and generalized well. While this method
captures complex temporal dynamics,
aligning with the findings of Wahyono et al.

Table Error! No text of specified style in document.
Training and Validation Loss (MSE) Results

(2021), it cannot process image data directly,
which limits its effectiveness for early-stage
pest detection. Even so, its strong handling of
time-based data makes it a promising
candidate for use in early warning systems
for greenhouse pest control. To evaluate the
reliability, training was implemented across
five independent trials. As shown in Table 4,
the average training and validation losses
(expressed with MSE) along with their
standard deviations and 95 % confidence
interval provide consistent and robust
performance across all trials.

Epoch Training Loss (MSE) Validation Loss (MSE)

20 0.0450 + 0.00015 (x0.00013) 0.0481 £ 0.00015 (x0.00013)
40 0.0320 £ 0.00014 (+£0.00012) 0.0350 £ 0.00012 (+0.00011)
60 0.0250 £ 0.00011 (+£0.00010) 0.0280 £ 0.00011 (+£0.00010)
80 0.0210 £ 0.00011 (£0.00010) 0.0220 £ 0.00011 (+£0.00010)
100 0.0180 £ 0.00011 (+0.00010) 0.0190 £ 0.00011 (+0.00010)

Note: 95% CI = +1.96 x (SDAn), where n = 5 runs.

The results demonstrate a consistent decline
in both training and validation loss over time,
indicating effective learning and
generalization. The low standard deviations

Figure 6
Training and Validation Loss Curves

and narrow confidence intervals across
epochs further confirm the model’s training
stability and robustness to stochastic
variations across runs.

Training and Validation Loss Curves
0.06

for LSTM Model

0.05

X

©
o
=

\.\

Loss (MSE)
o
o
w

o
o
N

o
o
—

o

20 40 E och60
—e—Training Loss (MSE) P

Validation Loss (MSE)

80 100

10
Sambu, Mbandu and Anondo



International Journal of Professional Practice (I/PP) VWb. I3 lsue No. 42025

Table Error! No text of specified style in document..2

LSTM Forecasting Performance Metrics

Metric Value
Mean Absolute Error 0.134
Root Mean Squared Error 0.204
Mean Absolute Percentage Error 6.23%

Note: The LSTM model performed better overall, with low MAE and RMSE values.

Hybrid CNN-LSTM Model Performance

The hybrid CNN-LSTM model outperformed
each of the independent architectures and
provided a more consistent and improved
performance. The overall accuracy of
detection score was 94.7% + 0.15 (95% CI: +
0.13); precision, 93.9%; recall, 93.8%; and
F1 score, 92.9%; together with standard
deviations and confidence intervals of £0.15
and £0.13 (respectively) (see Table 4). Its
excellent discriminative ability is also

Table 4

supported by an AUC of 0.962 + 0.0015
(95% CI: £0.0013). The ROC curves (Figure
5) compare the performance across models.
These results not only surpass earlier
benchmarks (Tiirkoglu & Hanbay, 2019) but
also highlight the real-world effectiveness of
hybrid model architectures. In addition, the
CNN-LSTM achieved an RMSE of 0.145 +
0.0015 (x0.0013) for pest outbreak
prediction, outperforming the LSTM-only
model and indicating improved regression
accuracy.

Performance Comparison of CNN, LSTM, and Hybrid CNN-LSTM Models

Metric CNN Mean +SD (95%  LSTM Mean + SD (95%  Hybrid CNN+LSTM
(%) Cl) Cl) Mean * SD (95% Cl)
Accuracy 89.7 +0.15 (+0.13) 88.1+0.15 (+0.13) 94.7 + 0.15 (£0.13)
Precision 87.5+0.15 (+0.13) 86.9 + 0.15 (+0.13) 93.9+0.15 (+0.13)
Recall 85.3 £ 0.15 (x0.13) 84.7 £ 0.15 (x0.13) 93.8 £ 0.15 (+0.13)
Fl-score  86.4 +0.15 (+0.13) 85.8 £ 0.15 (x0.13) 92.9 £ 0.15 (0.13)
AUC 0.901 + 0.0015 (+0.0013)  0.879 £0.0015 (¥0.0013)  0.962 + 0.0015 (+0.0013)
RMSE 0.213 £ 0.0015 (+x0.0013)  0.198 £ 0.0015 (¥0.0013)  0.145 + 0.0015 (+0.0013)

Note: Values are means over five runs, with standard deviation (SD) and 95% confidence interval (CI)

calculated as +£1.96 x (SD/V5).
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Figure 5
Model Evaluation Metrics Comparison
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Figure 6
ROC Curves Comparing CNN, LSTM, and Hybrid CNN-LSTM Models
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Note: This figure compares true and false positive rates across thresholds.

Results underscore the CNN-LSTM model’s ability to combine precise classification with reliable
forecasting for greenhouse pest management.
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4.0 Conclusion

The study demonstrated compelling evidence
that the hybrid model effectively and
accurately automated pest identification and
prediction of pest outbreaks distinctly in
greenhouse farming. The model yielded
positive results across all key assessment
metrics, including accuracy, precision, recall,
and Fl-score; and recognized the models
established ability to assess visual and time-
series data to identify pests in a timely
manner. Utilizing predictive capabilities will
allow growers to use timely, proactive pest
management approaches to decrease both
pesticide use and crop loss. The model, with
an intention for computational efficiency,
could be implemented on low-cost devices
and scaled for use in smallholder farms in low
resource settings. Its adoption supports
sustainable agriculture and strengthens food
security by providing accessible Al-driven
tools tailored to local farming conditions.

5.0 Recommendations

The study recommended that greenhouse
growers, particularly in regions such as
Limuru, Naivasha, and Thika, adopt Al-
driven pest surveillance programs to provide
early detection and timely response as part of

integrated greenhouse management.
Consequently, there is an immediate need for
capacity  building among  relevant

stakeholders to build digital trust and
awareness of Al-based pest analytics, thereby
improving usability and acceptance.
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Secondly, greenhouses should incorporate
IoT technologies to fully harness the potential
of greenhouse systems and facilitate real-
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