
                                    International Journal of Professional Practice (IJPP) Vol .  13 Issue No.  4 2025 

 

1 
Sambu, Mbandu and Anondo 

Deep Learning Approach for Detection and Prediction of Pest Infections on 

Plants in Greenhouses 
 

Bridgite Sambu1*, Vincent Mbandu1, Timothy Anondo1 

 
1 Kenya Methodist University P.O Box 267, 60200, Meru, Kenya 

*Correspondence email:bridgitem2@gmail.com 

 

Abstract     

Pest infestations remain problematic in greenhouse agriculture, lowering yields and increasing 

costs. Manual pest monitoring is laborious, slow, and error-prone, resulting in delayed 

interventions and excessive pesticide applications. The main objective of this research was to 

develop an AI-driven hybrid deep learning model for automated pest detection and outbreak 

prediction, integrating Convolutional Neural Networks (CNNs) for image-based classification and 

Long Short-Term Memory (LSTM) networks for forecasting to improve response efficiency. This 

study relied on secondary datasets, such as PlantVillage and IP02, owing to constraints in obtaining 

primary datasets. These datasets provided pre-annotated pest images and historical climate trends, 

guaranteeing model robustness. Although the model was trained using secondary data, the study 

was contextualized by greenhouses in Limuru, Naivasha, and Thika; areas where pest control is 

an ongoing challenge. To enhance the model's ability to generalize and perform well in an array 

of agricultural environments, a stratified sampling method which considered farm size and 

agroclimatic differences was used. Techniques such as image augmentation, noise reduction, and 

normalization of features were utilized to further improve the quality of the data before the model 

was trained. Model training and optimization were performed in a GPU-enabled Google Colab 

environment, which supported batch processing, early stopping, and fine-tuning of 

hyperparameters. The hybrid model achieved 94.7% accuracy, 93.6% precision, 92.8% recall, and 

a 93.2% F1-score. With a Mean Absolute Error (MAE) of 0.14 and an R² score of 0.89, the LSTM 

forecasting module demonstrated its efficiency. This hybrid approach enables early pest 

identification, preventative actions, and reduced pesticide use. 
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1.0 Introduction 

Pest infestations threaten global agriculture, 

with pests contributing about 40% of the total 

losses in value of crops each year (Kaushik et 

al., 2023). Traditional pest control 

techniques, such as physical inspections and 

pesticides, regularly fail to catch pests in the 

early stages, thereby overusing pesticides and 

harming the environment (Chowdhury & 

Anand, 2023). 

Artificial intelligence and deep learning offer 

promising alternatives for automated pest 

detection and prediction, enabling timely 

interventions and promoting sustainable 

farming (Yi et al., 2024).  

In Africa, pest problems continue to be 

severe in greenhouse systems where 

controlled environments accelerate pest 

reproduction (Mafongoya et al., 2019). To 

enhance precision agriculture, several 

nations, including Kenya, Nigeria, and South 

Africa, have started implementing AI-driven 

solutions (Adewusi et al., 2024). Despite 

advancements, most farmers still depend on 

manual scouting, which often lacks accuracy 

and efficiency. While studies exist to develop 

deep learning models for pest detection, very 

few have been put into practice (Chowdhury 

& and, 2023).  

In Kenya, the rise of greenhouse farming has 

increased not only crops' productivity, but 

also the risk of pest pandemics. Poor pest 

control can lead to postharvest losses, 

exceeding 70% (Mugao, 2023). 

The lack of real-time pest monitoring in 

regions like Limuru, Naivasha, and Thika 

highlights the need for AI-empowered pest 

detection and prediction, which is introduced 

in this study as a hybrid deep learning model 

meant to assist with sustainable pest 

management in Kenyan greenhouses. 

 

 

Statement of the Problem 

Pest infestations in greenhouse agriculture 

cause substantial losses when infested plants 

are not detected promptly. Current pest 

detection methods include manual 

inspections that are error-prone and are not 

real time. This research examined the issue 

by proposing the application of a deep 

learning solution integrating Convolutional 

Neural Network (CNN) features for 

extraction of images and Long Short-Term 

Memory (LSTM), to analyze the time series 

data for the detection and prediction of pest 

invasions. 

Purpose of the Study 

This study aimed to design, and evaluate a 

hybrid deep learning model that integrates a 

CNN for pest identification from images and 

LSTM networks for time series of pest 

outbreak prediction. The overall aim was to 

enhance the precision, function and 

timeliness of managing pests affecting 

greenhouse plants. 

Objectives of the Study 

i. To develop a CNN model to accurately 

identify image-base pest infections on 

greenhouse crops. 

ii. To develop a LSTM model to predict 

pest outbreaks based on temporal 

patterns  

iii. To integrate the CNN and LSTM 

models into a hybrid deep learning. 

iv. To evaluate the hybrid model’s 

performance using standard 

metrics. 

Theoretical Framework 

This research used Deep Learning Theory 

and Technology Acceptance Model (TAM) 

to establish a dual-framework that addresses 

both technical innovation and user-centered 

design in greenhouse pest management. Deep 

Learning Theory, grounded in artificial 

neural network (ANN) principles, guides the 
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development of a hybrid Convolutional 

Neural Network (CNN) Long Short-Term 

Memory (LSTM) architecture. The CNN 

layer extracts spatial features from pest 

images whereas the LSTM layer encodes 

time-dependent environmental trends. 

Together, they embody the theory’s 

principles of feature abstraction and temporal 

memory (Maraveas, 2023; Khan et al., 2020). 

The design decisions such as dropout 

regularization to minimize overfitting or 

ReLU activation as a non-linear function are 

directly influenced by theoretical imperatives 

of generalization and optimization. 

In this framework, Deep Learning Theory 

supports the technical model development, 

while TAM offers a framework for 

evaluating usability, perceived benefit and 

system trust through Perceived Usefulness 

(PU) and Perceived Ease of Use (PEOU), to 

be sure the model will not only be successful 

but also likely to be adopted. Stakeholder 

feedback will assess real-world applicability 
(Mohr & Kühl, 2021; Okai et al., 2024). 

Empirical evidence supports the use of CNN-

LSTM models for pest detection in Asian 

greenhouses (Zhang et al., 2021); yield 

forecasting in Germany (Khan et al., 2020); 

and  plant disease monitoring in India 

(Sharma et al., 2022). These implementations 

helped inform the current model by 

highlighting practical constraints, such as 

latency and interpretability that must be 

addressed for successful deployment, 

especially in Sub-Saharan Africa where such 

technologies are still underutilized. 

 

In conclusion, the model provides a 

combination of technological capabilities of 

deep learning and the user-centered 

perspective of the TAM framework. It opens 

the door to scalable and widely-used AI-

based pest management systems. 

Figure 1 

Conceptual Framework
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Empirical Literature Review 

Advancements in artificial intelligence and 

deep learning have improved pest detection 

and outbreak forecasting in agriculture. 

Nonetheless, the practical implementation is 

limited because of the technical and 

operational constraints. Conventional 

methods, such as manual scouting and 

pesticide applications are inefficient, costly, 

and can be damaging to ecosystems due to 

development of pesticide resistance 

(Chithambarathanu & Jeyakumar, 2023). 

Basic image processing methods (e.g., 

thresholding and edge detection) facilitate 

some level of automation, but they are highly 

unreliable in agricultural environments 

which are complex and unpredictable 

(Chowdhury & Anand, 2023). 

CNNs have enhanced pest identification by 

extracting features from images of diseased 

plants (Chowdhury & Anand, 2023). Still, 

their use in greenhouse settings is limited due 

to inconsistencies in lighting conditions and 

crop species. Teixeira et al. (2023) examined 

transfer learning as a potential solution, but 

cautioned that issues like dataset bias and 

model degradation may compromise 

predictive reliability. 

To improve real-time monitoring, IoT-based 

solutions have been proposed, incorporating 

cameras and environmental sensors (Mittal, 

2024). Nonetheless, sometimes, lacking 

predictive capacity, systems often require 

computational capabilities that are not 

accessible to smallholder farmers 

(Chithambarathanu & Jeyakumar, 2023). As 

a result, lightweight AI models (Gao et al., 

2020) and intuitive user interfaces (Bieniek et 

al., 2024) are perceived as necessary in 

verifying resource contexts. Limited 

numbers, local access, and skepticism remain 

challenges in their uptake in Kenya 

(Chowdhury & Anand, 2023). 

This study fills a critical gap by developing 

and evaluating a hybrid CNN-LSTM pest 

management model designed to 

accommodate smallholder greenhouse 

farmers in Kenya. By integrating image 

recognition with temporal prediction, the 

model provides early alerts and offers a 

context-appropriate, accessible solution for 

pest detection and outbreak forecasting. 

2.0 Materials and Methods    

Research Design 

The research adopted a hybrid research 

approach, consisting of experimental, 

comparative, and descriptive approaches to 

evaluate deep learning models for pest 

identification, detection, and prediction of 

outbreaks in greenhouse agriculture 

(Türkoğlu & Hanbay, 2019; Selvaraj et al., 

2019). The study entailed in-depth evaluation 

of the models and an emphasis on usability 

and acceptance, to ensure methodological 

rigor and applicability.  

The experimental evaluation consisted of 

training datasets in a structured manner, 

testing each model, and iteratively 

optimizing the models based on established 

key performance indicators; RMSE, 

accuracy, precision, and recall (Teixeira et 

al., 2023). The comparative approach 

appraised the CNN, LSTM, and hybrid CNN-

LSTM architectures based on performance; 

thereby allowing for comparison of models 

against the previous pest detection 

procedures (Chowdhury & Anand, 2023).  

The descriptive approach analyzed existing 

literature, interviews, and surveys on 

automation in agriculture, highlighting users' 

openness to adoption. Combined with 

experimental and comparative analyses, it 

provided key insights into the role of AI in 

precision agriculture and pest management. 

Contextual Population and Stakeholders 

The study’s context comprise greenhouse 

farming practices in Limuru, Naivasha, and 

Thika, which were selected for their high pest 
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pressure, horticultural importance, as well as 

indication of diverse agroclimatic conditions. 

Important stakeholders, such as farmers, 

agronomists, extension officers were enrolled 

through previous studies and institutional 

reports to contextualize pest management and 

use of AI.  

Secondary Data and Sampling Framework 

Model development and evaluation were 

conducted exclusively using secondary data, 

including pest images and time-series records 

on environmental and pest variables. The 

data were derived from agricultural databases 

and greenhouse databases, selected for 

quality, completeness and relevance to target 

areas. 

Stratification and representation 

A proportionate stratification sampling 

procedure was used on the secondary 

datasets, based on greenhouse distribution 

across Limuru, Naivasha, and Thika. Limuru 

provided the greatest volume of data, 

reflecting the density of greenhouses in that 

locality. The sampling technique guaranteed 

representation of the variability in climate, 

operating scale, and crop type which 

increased the external validity of the model 

and potential for its generalization across 

greenhouses’ different contexts. 

Dataset(s) and Tools Used 

This study employed two secondary datasets 

to guarantee reliable pest detection and 

outbreak prediction owing to the constraints 

of resources in collecting comprehensive 

primary data. The image classification 

dataset, PlantVillage, included 9,243 labeled 

RGB images of healthy and pest-infected 

leaves (Hughes & Salathé, 2019). For time 

series forecasting, IP202 and a structured 

dataset of 3,150 temporally indexed records 

which included environmental parameters 

and pest counts were used (Kapetas et al., 

2025). These datasets provided historical 

climate trends and pre-annotated pest images, 

which helped the model to be resilient despite 

limited direct data collection. 

Both datasets were split for systematic model 

training to ensure a fair assessment and 

prevent overfitting (Table 1).

Table 1 

Dataset Split 

Dataset Split % 
Dataset Distribution 

PlantVillage  IP02 

Training 70 6, 740 2,205 

Validation 15 1,386 472 

Testing 15 1,387 473 

The IP202 dataset and the PlantVillage 

dataset were both preprocessed to maximize 

model value prior to training. 

The images were modified to standardize the 

input dimensions for the CNN using an 

adjusted image size of 224x224 pixels 

(Hughes & Salathé, 2019). Pixel values were 

normalized to a range of 01, which enhanced 

model convergence during training (Teixeira 

et al., 2023). To improve generalization 

across various situations, data augmentation 

methods, such as flipping, random rotation, 

and contrast adjustments were employed 

(Ngugi et al., 2021). 

To ensure consistency among the LSTM 

input representations, environmental 

parameters such temperature, humidity, and 

pest counts were scaled using MinMax 

normalization (Kapetas et al., 2025). To 

maintain the continuity of the timeseries, 
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missing data were treated using linear 

interpolation (Gao et al., 2020). Stratified 

sampling, which equally represented all 

training subgroups, reduced biases in the 

frequency of pest outbreaks (Wang et al., 

2025). 

Computational Tools Used 

Model training and evaluation were 

conducted on the Google Colab platform. It 

was developed using TensorFlow, Keras, and 

OpenCV, with visualizations generated 

through standard libraries. Preprocessing and 

evaluation were done using Scikit-learn. This 

approach supported the development of a 

scalable and practical solution for pest 

detection and forecasting. 

Model Architecture 

The model architecture used for this research 

contained two main components: CNN for 

image-based pest detection, and LSTM for 

time-series outbreak prediction. The 

integration of CNN and LSTM architectures 

allowed the model to benefit from CNN's 

spatial feature extraction from images of 

infected leaves, while using environmental 

trends for predicting outbreaks, and 

establishing a robust AI-driven pest 

management system. 

CNN Model 

A CNN model was employed to automate 

pest identification by extracting spatial 

features from infected leaf images. The 

architecture consisted of multiple 

convolutional layers that learned patterns and 

textures. Each convolutional layer was 

followed by a ReLU activation function for 

intricate data correlations. Maxpooling layers 

allowed for reduction of the feature map 

dimensions while retaining salient visual 

features. Convolutional layers gradually 

extracted complete pest specific patterns. 

Finally, fully connected layers translated 

features presented into a classification 

probability for specific pest categories. This 

order of operations permitted the CNN to 

achieve high pest detection accuracy. Figure 

2 shows the CNN Model architecture;  

Figure 2 

CNN Model Architecture 

 

LSTM Model 

The LSTM model utilizes environmental data 

like temperature and humidity to forecast 

pest outbreaks, employing gated memory 

cells to retain critical information and reduce 

errors. Performance improvements, 

including bidirectional and stacked layers, 

feature engineering, and hyperparameter 

tuning, strengthened its capacity to learn 

temporal patterns. This facilitates accurate 

detection of pest infestation trends and 

enables proactive pest management. The 

LSTM architecture is shown in Figure 3. 

Figure 3 

LSTM Model Architecture  
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Hybrid CNN-LSTM Model  

The CNN-LSTM model integrated image-

based classification and environmental 

forecasting as an end-to-end model, while 

allowing for an overarching 

multidimensional analysis of pests. The CNN 

was required to extract spatial features from 

images of leaves, while coding the visible 

symptoms of pests into numerical feature 

vectors. The feature vectors were then 

concatenated with environmental sequential 

data as time-series data, through the LSTM. 

By combining images and environmental 

features, the model also developed more 

informed predictions, while it also developed 

improved detection rates, which is a key to 

supporting farmers to identify pests, and at 

the same time predict their outbreak, as part 

of a decision-support system for greenhouse 

agriculture. 

Combining CNN visual processing with 

LSTM temporal analysis (Figure 4) improved 

pest detection and forecasting, enabling 

scalable real-time support in greenhouse 

agriculture. 

Figure 4 

Hybrid CNN-LSTM Model architecture 

 

Evaluation Framework 

To assess the hybrid CNN-LSTM model's 

performance, the classification metrics were 

used. This two-pronged approach validated 

not only the spatial model components, but 

also the temporal model components 

(Powers, 2020). 

Classification Metrics for Pest Detection 

Accuracy, is the number of correctly 

predicted instances (true positives and true 

negatives) over the number of all instances. 

 

𝐴𝑐𝑐𝑢𝑟𝑎𝑐𝑦 =
𝑇𝑃+𝑇𝑁

𝑇𝑃+𝑇𝑁+𝐹𝑃+𝐹𝑁
   

  (1) 

where: 

TP = True Positives 

TN = True Negatives 

FP = False Positives 

FN = False Negatives 

Precision, quantifies how many of the 

positively predicted cases were actually 

correct  

𝑃𝑟𝑒𝑐𝑖𝑠𝑖𝑜𝑛 =
𝑇𝑃

𝑇𝑃+𝐹𝑃
     

 (2) 

Recall, determines the proportion of actual 

pest-infested plants that the model correctly 

identifies  

𝑅𝑒𝑐𝑎𝑙𝑙 =
𝑇𝑃

𝑇𝑃+𝐹𝑁
       

 (3) 

F1-score, balances precision and recall for a 

more stable evaluation of model performance  

𝐹1 − 𝑆𝑐𝑜𝑟𝑒 = 2 X 
Precision X Recall

Precision+Recall
      

 (4) 

Regression Metrics for Outbreak 

Forecasting 

Root Mean Squared Error (RMSE) penalizes 

large errors more than smaller ones, giving a 

strong  

sense of average magnitude of error. 

𝑅𝑀𝑆𝐸 =  √
1

𝑛
∑ (n

𝑖 =1 𝑦𝑖  −  ŷ𝑖)2      

 (5) 
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Mean Absolute Error (MAE), measures the 

average magnitude of prediction errors 

(Turkoglu et al., 2019): 

𝑀𝐴𝐸 =

 
1

𝑛
 ∑ |n

𝑖 =1 𝑦𝑖  −  ŷ𝑖|      

 (6) 

where 𝑦𝑖 represents actual values, 

ŷ𝑖represents predicted values, and n is total 

number of observations. 

R² Score, indicates how well the LSTM 

model explains variance in pest outbreak 

trends. A higher R² value indicates stronger 

predictive performance (Harthik et al., 2024): 

R² =  
∑(𝑦𝑖 − ŷ𝑖)2

∑(𝑦𝑖 − 𝑦̅)2    

 (7) 

3.0 Results and Discussion 

The research assessed CNN, LSTM, and 

hybrid CNN-LSTM models for pest detection 

and the forecasting of pest outbreaks with 

image-based detection and error/miss 

measures. The results indicated high levels of 

reliability and predictive accuracy. The 

research was compared to historic 

benchmarks to ensure coverage, reliability 

and accuracy (Wahyono et al., 2021; Too et 

al., 2019). 

CNN Model’s Performance 

The CNN model's performance in detecting 

and classifying pest-infested crops was 

assessed with multilabel classification 

metrics, including accuracy, precision, recall, 

F1 score, RMSE, and AUC. 

CNN Training and Validation  

Training accuracy increased from 85.2% to 

96.2%, and validation accuracy from 82.7% 

to 94.5% over 50 epochs. Training loss 

decreased from 0.45 to 0.06, and validation 

loss from 0.53 to 0.15, demonstrating 

effective learning with no evidence of 

overfitting. These findings corroborate those 

of Too et al. (2019) who found out that CNN 

is effective for static image tasks. With pest 

outbreaks carrying temporal characteristics, 

CNN alone could not properly address the 

issue, leading to the incorporation of LSTM. 

To evaluate robustness, the training was done 

a total of five times. Table 2 provides mean, 

standard deviation (SD), and 95% confidence 

interval (CI) for training/validation metrics, 

supporting the consistency of the model. 

Table 1  

Training and Validation Accuracy across Epochs 

Epoch Training Accuracy 

(%) Mean 

SD 95% CI 

(±) 

Validation Accuracy 

(%) Mean 

SD 95% CI 

(±) 

10 85.2 0.15 0.13 82.7 0.15 0.13 

20 90.46 0.11 0.10 87.96 0.11 0.10 

30 93.7 0.14 0.12 91.2 0.14 0.12 

40 95.02 0.08 0.07 93.0 0.15 0.13 

50 96.22 0.08 0.07 94.5 0.08 0.07 
Note: Mean training and validation accuracy (%) across five runs, with SD and 95% CI (±1.96 × SD/√5). 
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Table 3 

Training and Validation Loss Across Epochs 5  

Epoch Training Loss 

Mean 

SD 95% CI 

(±) 

Validation 

Loss Mean 

SD 95% CI 

(±) 

10 0.452 0.0084 0.0073 0.528 0.0084 0.0073 

20 0.310 0.0071 0.0062 0.350 0.0071 0.0062 

30 0.180 0.0071 0.0062 0.270 0.0071 0.0062 

40 0.100 0.0071 0.0062 0.190 0.0071 0.0062 

50 0.060 0.0071 0.0062 0.150 0.0071 0.0062 
Note: Mean training and validation loss (MSE) across five runs, with SD and 95% CI (±1.96 × SD/√5). 

Figure 5  

Accuracy and Loss Curves for CNN Model 

 

The model's performance metrics (Table 3) 

shows high classification accuracy and a 

strong balance between precision and recall 

after training. 

 

Table 3 

CNN Model’s Performance 

Metric Score 

Accuracy 92.4% 

Precision 91.8% 

Recall 90.3% 

F1-Score 91.0% 

AUC (ROC) 0.957 

Note. Performance aligns with findings adapted from Turkoglu et al. (2019) and Hughes & 

Salathé (2019). 
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LSTM Model’s Performance 

The LSTM model was trained using weekly 

time-series data that included environmental 

variables and pest incidence, aiming to 

forecast pest activity one week ahead. 

Throughout training, the model steadily 

improved, as shown by the decline in both 

training and validation losses (Figure 6), 

indicating that it learned temporal patterns 

and generalized well. While this method 

captures complex temporal dynamics, 

aligning with the findings of Wahyono et al. 

(2021), it cannot process image data directly, 

which limits its effectiveness for early-stage 

pest detection. Even so, its strong handling of 

time-based data makes it a promising 

candidate for use in early warning systems 

for greenhouse pest control. To evaluate the 

reliability, training was implemented across 

five independent trials. As shown in Table 4, 

the average training and validation losses 

(expressed with MSE) along with their 

standard deviations and 95 % confidence 

interval provide consistent and robust 

performance across all trials. 

Table Error! No text of specified style in document. 

Training and Validation Loss (MSE) Results 

Epoch Training Loss (MSE) Validation Loss (MSE) 

20 0.0450 ± 0.00015 (±0.00013) 0.0481 ± 0.00015 (±0.00013) 

40 0.0320 ± 0.00014 (±0.00012) 0.0350 ± 0.00012 (±0.00011) 

60 0.0250 ± 0.00011 (±0.00010) 0.0280 ± 0.00011 (±0.00010) 

80 0.0210 ± 0.00011 (±0.00010) 0.0220 ± 0.00011 (±0.00010) 

100 0.0180 ± 0.00011 (±0.00010) 0.0190 ± 0.00011 (±0.00010) 

Note: 95% CI = ±1.96 × (SD/√n), where n = 5 runs. 

The results demonstrate a consistent decline 

in both training and validation loss over time, 

indicating effective learning and 

generalization. The low standard deviations 

and narrow confidence intervals across 

epochs further confirm the model’s training 

stability and robustness to stochastic 

variations across runs. 

Figure 6 

Training and Validation Loss Curves  
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Table Error! No text of specified style in document..2  

LSTM Forecasting Performance Metrics 

Metric Value 

Mean Absolute Error 0.134 

Root Mean Squared Error  0.204 

Mean Absolute Percentage Error  6.23% 

Note: The LSTM model performed better overall, with low MAE and RMSE values. 

Hybrid CNN-LSTM Model Performance 

The hybrid CNN-LSTM model outperformed 

each of the independent architectures and 

provided a more consistent and improved 

performance. The overall accuracy of 

detection score was 94.7% ± 0.15 (95% CI: ± 

0.13); precision, 93.9%; recall, 93.8%; and 

F1 score, 92.9%; together with standard 

deviations and confidence intervals of ±0.15 

and ±0.13 (respectively) (see Table 4). Its 

excellent discriminative ability is also 

supported by an AUC of 0.962 ± 0.0015 

(95% CI: ±0.0013). The ROC curves (Figure 

5) compare the performance across models. 

These results not only surpass earlier 

benchmarks (Türkoğlu & Hanbay, 2019) but 

also highlight the real-world effectiveness of 

hybrid model architectures. In addition, the 

CNN-LSTM achieved an RMSE of 0.145 ± 

0.0015 (±0.0013) for pest outbreak 

prediction, outperforming the LSTM-only 

model and indicating improved regression 

accuracy.  

Table 4 

Performance Comparison of CNN, LSTM, and Hybrid CNN–LSTM Models 

Metric 

(%) 

CNN Mean ± SD (95% 

CI) 

LSTM Mean ± SD (95% 

CI) 

Hybrid CNN+LSTM 

Mean ± SD (95% CI) 

Accuracy 89.7 ± 0.15 (±0.13) 88.1 ± 0.15 (±0.13) 94.7 ± 0.15 (±0.13) 

Precision 87.5 ± 0.15 (±0.13) 86.9 ± 0.15 (±0.13) 93.9 ± 0.15 (±0.13) 

Recall 85.3 ± 0.15 (±0.13) 84.7 ± 0.15 (±0.13) 93.8 ± 0.15 (±0.13) 

F1-score 86.4 ± 0.15 (±0.13) 85.8 ± 0.15 (±0.13) 92.9 ± 0.15 (±0.13) 

AUC 0.901 ± 0.0015 (±0.0013) 0.879 ± 0.0015 (±0.0013) 0.962 ± 0.0015 (±0.0013) 

RMSE 0.213 ± 0.0015 (±0.0013) 0.198 ± 0.0015 (±0.0013) 0.145 ± 0.0015 (±0.0013) 

Note: Values are means over five runs, with standard deviation (SD) and 95% confidence interval (CI) 

calculated as ±1.96 × (SD/√5). 
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Figure 5  

Model Evaluation Metrics Comparison 

 
Figure 6  

ROC Curves Comparing CNN, LSTM, and Hybrid CNN-LSTM Models 

  
Note: This figure compares true and false positive rates across thresholds.  

Results underscore the CNN-LSTM model’s ability to combine precise classification with reliable 

forecasting for greenhouse pest management. 
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4.0 Conclusion 

The study demonstrated compelling evidence 

that the hybrid model effectively and 

accurately automated pest identification and 

prediction of pest outbreaks distinctly in 

greenhouse farming. The model yielded 

positive results across all key assessment 

metrics, including accuracy, precision, recall, 

and F1-score; and recognized the models 

established ability to assess visual and time-

series data to identify pests in a timely 

manner. Utilizing predictive capabilities will 

allow growers to use timely, proactive pest 

management approaches to decrease both 

pesticide use and crop loss. The model, with 

an intention for computational efficiency, 

could be implemented on low-cost devices 

and scaled for use in smallholder farms in low 

resource settings. Its adoption supports 

sustainable agriculture and strengthens food 

security by providing accessible AI-driven 

tools tailored to local farming conditions. 

5.0 Recommendations 

The study recommended that greenhouse 

growers, particularly in regions such as 

Limuru, Naivasha, and Thika, adopt AI-

driven pest surveillance programs to provide 

early detection and timely response as part of 

integrated greenhouse management. 

Consequently, there is an immediate need for 

capacity building among relevant 

stakeholders to build digital trust and 

awareness of AI-based pest analytics, thereby 

improving usability and acceptance. 

Secondly, greenhouses should incorporate 

IoT technologies to fully harness the potential 

of greenhouse systems and facilitate real-

time analysis of the environmental conditions 

and crop health.  

Lastly, the study recommends the 

government agencies and agricultural 

institutions to offer funding, training 

programs and regulatory assistance, to 

establish parameters for the effective 

deployment and scaling of AI-based pest 

management to address pest surveillance 

systems and smart agriculture nationally. 

Future Directions 

Future research should focus on enhancing 

the adaptability and predictive capabilities of 

the model by adding additional variables, like 

soil health metrics, varietal characteristics of 

crops, and early-stage indicators of pests and 

diseases. Applying data from IoT sensors that 

monitor temperature, humidity, and light can 

also allow us to respond better to the dynamic 

nature of greenhouse environments (Sujatha 

et al., 2025).  

Locally-oriented field deployments spanning 

agro-climatic zones in Kenya and Sub-

Saharan Africa will be pivotal in determining 

generalizability and robustness in variable 

growing conditions. To facilitate real-time 

use, future work could also explore the use of 

cloud-based GPU infrastructures to enable 

real time pest detection and pest outbreak 

predictions (Zhang et al., 2025). 
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